Education 2.0: The destructive re-construction of higher learning

Disruption on the horizon for education industry
By Mihnea Moldoveanu
|Canadian HR Reporter|Last Updated: 03/01/2018

An unprecedented — and massively overdue — wave of innovation in the higher education industry is about to be unleashed.

It will bring unprecedented disruption to a field whose practices and routines have remained unchanged for more than 1,000 years. The technology, know-how and rationale for a learner-centric platform for higher learning are here and we need to make this happen.

This is not a typo: Early Renaissance paintings depicting classrooms and historical accounts of learning practices indicate that the basic choreography of content, context, learner-teacher interactions, and structured drilling and quizzing as a pre-requisite to certification have not changed.

The lecture-problems-recitation-exam format — canonized by repeated practice in early modern Europe and in North America — formed the basis on which learners are sorted, filtered, measured, incentivized, evaluated and taught.

Remarkably, these practices have persisted in spite of a century’s worth of empirical evidence — in cognitive and applied psychology, educational practice, and artificial intelligence (AI) — that there are faster, better, cheaper ways of helping learners acquire net new skills than those that populate current college and university classrooms and labs. 

Spaced learning, variable-delay reinforcement-based learning, socialized learning, hyper-resolution feedback, fast/frequent/personalized/adaptive feedback-based learning, socialized learning and contextualized learning present modern-day educators with building blocks for the redesign of the learning experiences in ways that increase the efficacy and efficiency of both skill acquisition and skill transfer — meaning the application of a skill outside of the context in which it is acquired.

But innovation in the billion-dollar higher education field has been slow, sporadic, spotty and segregated into fields, subfields, departments and “areas.”

The behavioural blueprints of learning experiences — courses,  classes, recitations, tutorials, quizzes, problem sets, essays, exams — have yet to change in ways that even closely resemble the restructuration of everyday experiences in the music, retail, publishing, travel, communications or financial industries.

The explanations usually offered for this painful factoid draw on the macro- and micro-incentives of research-active academics and departments that use teaching-driven revenue to subsidize research activities whose outcomes are the ones that “count,” and the institutional forces of research-centric universities that align in the direction of minimizing the logistical unpredictability that innovation waves trigger.

They point to the sociology and social, cognitive and developmental psychology of homo academicus — a creature better suited and predisposed to speaking about a phenomenon (say, innovation in a different field) than to practising it, to analysis of innovative options rather than the prerequisite action, and to representing rather than intervening.

Or, they take the “tough-mindedly realist” position that higher education is a filtering and evaluation process of students for employers, wherein learning and development are desirable but rare and accidental byproducts.

Of course, this is precisely the sort of (quasi)-causal explanation whose proliferation causally contributes to the perpetuation of the status quo: In the face of such massive synergistic forces, how could it not be that the practice of teaching and learning lags behind insights and empirical findings by a good century?

But, like most explanations, it is incomplete in factual base and erroneous in inference.

The last 10 years have seen massive innovation in the field. MIT’s 20-year-old Open CourseWare initiative and Stanford’s 30-year-old commitment to continuous, remote learning have morphed and proliferated into a massive, open-learning “exoskeleton” which, under the guises of EDX, Coursera and Udacity, bring state-of-the-art content to millions of users, while making it possible for dedicated instructors to learn how to teach from one another.

Curricular innovation in professional programs — notably  business and medicine — has been on the rise since the early 2000s, responding to new demands for quintessentially human and executive skills from ever-more-savvy recruiters, whose own in-house training programs have also grown in sophistication and size (witness a tenfold increase,  from 200 to 3,000, of “corporate universities” between 2004 and 2015.)

Responding to the need for contextualized learning that combines conceptualization and technical skills with the practical know-how provided by context, leading-edge engineering programs — such as the Olin College of Engineering — have redesigned their learning vehicles “from scratch,” and from first principles, to maximize on the still-elusive objective of skill transfer from classroom to “life” — and the life-world of organizations, in particular.

Alongside positive evidence for curricular and institutional innovation, there is no evidence that course-level innovation happens less frequently than innovation in any other field — including those considered to be considerably less inert than academia.

New techniques for polling learners, drawing them into the socialized and disciplined dialogue of the classroom, and making them co-accountable for the efficiency of the learning production function of their program, are finding their ways in graduate and undergraduate courses alike.

The burgeoning wave of investment in “EDTech” — educational technologies meant to increase the effectiveness of learning through personalization of content and context — suggests pedagogical innovation is alive.

Alive, yes, but where is it? And, more importantly, why does all of this innovation not translate into a radical transformation of learning practices across the field?

Why does the industry increasingly appear to live up to management consultant Peter Drucker’s indictment of it as the “largest burden on the backs of taxpayers,” stimulating increasingly shrill calls for radical technology-based transformation?

Platforms as drivers of transformative innovation

A large part of the answer lies in plain sight.

Local, de-synchronized, segregated innovation needs an open, integrative platform to generate both internal momentum and an industry-wide transformation.

Advances in telecommunications — we are now working on 5G systems — provide a telling example.

In the educational field, the Learning Management Engine (LME) provides the equivalent innovation platform that promises to aggregate and integrate across isolated innovations in learning and instructional design.

It provides a locus of innovation that allows both learners and instructors to understand the best ways to learn, and to teach — while at the same time teaching and learning.

A recent, large-scale study jointly undertaken by the Rotman School of Management and Harvard Business School has identified the massive gaps in skills learned and skills transferred that besets the higher education field, showing that the most effective forms of learning are personalized to the learner, socialized to her learning group, and contextualized to her work and life environment.

That is precisely what a learner-centric LME will do: It will allow instructors to collaboratively and interactively design content and learning experiences adaptive to the preferences, backgrounds, cognitive and affective styles of learners, by interfacing to platforms and applications used in recruitment, admissions and alumni relations that track learner backgrounds, interests and employment patterns, while at the same time allowing instructors to do quick A/B testing of content and learning experience designs.

Data analytics — proprietary and closed in current systems, but open in the learner-centric LME — will allow for continuous tracking of learner profiles and learning-oriented behaviours and learning outcomes, and for in-depth understanding of what-works-for-whom-and-when when it comes to the design of learner-instructor and learner-learner interactions.

Unlike current LMEs, which do not allow for instantaneous in-band transfers of data between the core engine and other learning-enhancing applications, the learner-centric LME will enable instructors and learners alike to use and share learning apps in the same learning environment, thus deepening collaboration among instructors and programs and tapping into the burgeoning ecosystem of EDTech applications that is currently “waiting on the sidelines” and being only sporadically used. 

With the flexible allocation of decision rights to learners and instructors and the free flow of data and content across programs and schools, a real “learning innovation ecosystem” will be enabled. Higher education is a densely and tightly coupled network of activities and tasks, which include selecting and motivating learners, informing and testing them, connecting them to instructors, content and other learners — all while heeding the metronome of the academic year and program guidelines.

Learner-centric LMEs will enable a flexible allocation and re-allocation of decision rights over the learning process: Whereas current LMEs give the preponderance of authority over class constitution, allowable content sharing, analytics, co-horting, apps deployment and interfacing to administrators and developers, a learner-centric LME will allow instructors and learners to collaborate in the design of the learning experience itself, by selecting the additional applications, data analytics, testing protocols and whole-course/whole class designs that best fit their learning and instructional objectives.

Even without any of the improvements in the learning production function promised — and likely over-promised — by pundits and gadflies in the “new AI” movement, proven, reliable techniques like collaborative filtering can be deployed in the learner-centric LME to produce the social multiplier of learning efficacy that has been amply documented in empirical research.

Why is the transition taking so long? 

Once articulated, a learner-centric LME seems oddly obvious as a large piece of the solution to filling the “innovation hole” of higher education.

Why are we not there yet, despite having par-coursed four generations of learning-management systems and engines — and the ratification of a new standard (Learning Technologies Interoperability) designed to assure the very kind of openness to applications and analytics we currently lack?

A quick look at the evolution of the LMS/LME industry gives us the requisite hints. The industry is heavily concentrated around entrenched providers of admin-centric LMS platforms that are not interoperable, closed to state-of-the-art analytics engines, and closed to learning applications that are originating in the Web 2.0+ environment of socialized, network-based learning.

Although some of them started from open source platforms (such as Canvas and Moodle), they developed interstitial modules for data transfer and interoperability that make their current instantiations de facto closed, which allows them to charge universities richly for analytics on their own learner-relevant data sets.

And they have succeeded by exploiting the significant asymmetries of information and technical expertise between university administrators and academics and their own technical teams. 

Indeed, academia seems prone to this peculiar dynamic: Academic researchers serve as pro bono reviewers on articles that appear in journals sold by their publishers back to universities at astounding margins — a dynamic that new platform initiatives like Montreal’s Open Neuroscience have been set up to address.

Solution at hand

A problem suitably posed is three-quarters solved. Given the current landscape of innovation, the pressures on universities to deliver a learner skill base commensurate with the costs of higher education, the awareness we have of the skills gap and the skills-transfer gap in educationm and the availability of a bona fide standard allowing for the free flow of information and the free inter-operability of learning and analytics platforms, it seems that a solution is readily at hand. The success of large-scale platforms — such as Coursera, EDX and Microsoft-LinkedIn learning — to bring together learners, instructors and content in open formats point the way to a solution to the “innovation gap” whose implementation is now at hand.

This article originally appeared in Rotman Management, the magazine of the Rotman School of Management at the University of Toronto. Mihnea Moldoveanu is a Desautels professor of integrative thinking, professor of business economics, vice-dean of learning, innovation and executive programs, director of the Desautels Centre for Integrative Thinking, director of the Mind Brain Behavior Hive and academic director of the Self Development Lab and the Leadership Development Lab at the Rotman School of Management, as well a visiting professor at Harvard Business School in Boston, Mass.

Add Comment

  • *
  • *
  • *
  • *